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Abstract

The paper investigates the predictive performance of different explicit Reynolds–stress closure models when applied to the

simulation of 3D wall jets. The flow is of particular interest for its remarkably large ratio of lateral to normal spreading. Experi-

ments report that the lateral rate of spread exceeds the wall-normal rate of spread between five and nine times. This phenomenon is

often vigorously misrepresented by RANS simulations. There exists some body of evidence suggesting that the large lateral

spreading is due to significant amounts of turbulence-driven axial vorticity (J. Fluid Mech. 435 (2001) 305). The origin of the axial

vorticity can be traced back to the anisotropy of turbulent normal stresses perpendicular to the jet axis. The present paper assess the

ability of explicit stress–strain relationships to mimic the normal-stress anisotropy in 3D wall jets. It is shown that linear Boussinesq-

viscosity models inevitably fail to render the spreading mechanism. Moreover, the paper argues that a physically sound modelling of

3D wall jets requires an explicit closure to include at least one quartic term.
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1. Introduction

Engineering applications often feature 3D wall jets.

The most prominent applications are, perhaps, the film

cooling of turbine blades and the defrosting of vehicle

windscreens. In both examples, the surface wetted by the
jet is of major relevance to the design intent. Hence, an

accurate prediction of the spreading mechanism is of

crucial importance.

The discriminative spreading behaviour is a charac-

teristic feature of the 3D wall jet. Experiments indicate

that the lateral rate of spread is between five and nine

times as large as the wall-normal spreading rate. Various

authors, e.g. Abrahamsson (1997), Launder and Rodi
(1983), Newman et al. (1972), have discussed the re-

markable spreading behaviour of the 3D wall jet. Re-

cently, Craft and Launder (2001) reported on a detailed

computational investigation which aimed to identify the

origin of the large lateral spreading mechanism. It was

concluded, that the high lateral rate of spread can be

attributed to stress-induced axial vorticity, which is

generated by the anisotropy of the Reynolds-normal

stresses perpendicular to the jet axis. As displayed in

Fig. 1, the secondary motion enforces a lateral move-

ment of fluid away from the symmetry plane along the

bottom wall. Since the mechanism is induced by tur-
bulence-driven secondary motion, it is closely related to

the generation of stress-induced streamwise vorticity in

non-circular duct flows (Rung et al., 2000). A subsidiary

analysis of the non-circular duct is therefore advisable.

A general modelling framework to render the physics

of the 3D wall jet might arguably be based on an implicit

second-moment closure. Craft and Launder (2001) em-

ployed a complex cubic non-linear pressure–strain model
and a linear pressure–strain model supplemented by cor-

rective wall-reflection terms, to mimic the phenomenon.

Such an elaboratemodelling approach is, however, still un-

feasible when applied to complex industrial simulations.

In contrast to Craft and Launder (2001) the present

paper focuses upon explicit Reynolds-stress closures

along a route suggested by Gatski and Speziale (1993),

which offer a physically sound extension of the most
prominent linear Boussinesq-viscosity models at modest

computational effort.
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2. Mathematical model

The present study is confined to the analysis of an

incompressible fluid based on a Reynolds-averaged ap-

proach. The governing equations for the conservation of

mass and momentum read:
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Here, p, ., m and �uui denote the pressure, density,

viscosity and the Reynolds-averaged velocity based on

Cartesian tensor notation, respectively. Supplementary
to Eq. (2), a turbulence closure model for the unknown

Reynolds stresses u0iu
0
j is needed to attain a closed system

of equations.

Various closures featuring different degrees of com-

plexity and predictive quality have been developed over

the last decades. The most thorough implicit second-

moment closures utilise individual transport equations

for each component of u0iu
0
j, which is computationally

expensive. Industrial engineering applications predomi-

nantly employ less expensive, explicit Reynolds-stress

closures. An explicit Reynolds-stress closure consists of

two parts, a stress–strain relation and a background

model. The stress–strain relation describes the Reynolds

stresses as a function of the mean-velocity gradients and

the considered unknown turbulent scalars. The back-

ground model comprises the transport equations for the
considered turbulent scalars, i.e. length- and velocity-

scale variables.

2.1. Background model

The most common approach is a two-equation

model, based on two transport equations for the un-

known scalars, i.e. the turbulence energy k ¼ 0:5 u0iu
0
i

and the energy-dissipation rate e. Various alternative

formulations exist, e.g. k � x, k � l, k � s, which might

yield a change of the Reynolds-stress magnitudes but do

not alter the structure of the stress tensor. The active

components of the Reynolds-stress tensor––in particular

the degree of stress anisotropy––are primarily goverened

by the employed stress–strain relation for a given strain
field. The anisptropy tensor is––of course––also influ-

enced by the background model since it globaly scales

with the turbulent time scale. The latter is, however,

only a scalar which carries no structural or tensorial

information and thus creates no anisotropy on its own.

Without the loss of generality, the present paper is thus

confined to a specific low-Re k–e model reported by Lien
and Leschziner (1993), viz.
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Ce1 ¼ 1:44f1; Ce2 ¼ 1:92f2; Prk ¼ 1;

Pre ¼ 1:3; Rt ¼
k2

me
; Rk ¼

ffiffiffi
k

p
n

m
;

f1 ¼ 1þ P

P� ; f2 ¼ 1� 0:3e�R
2
t ;

fl ¼ 1� e�alRk

1� e�aeRk
; P ¼ �u0iu0jSij;

P� ¼ f2Ce2k1:5

Ce1Le
e�adR2k ;

Le ¼ jclð�0:75Þnð1� e�aeRk Þ;
cl ¼ 0:09; ad ¼ 0:0022;

ae ¼ 0:263; al ¼ 0:016:

ð6Þ

2.2. Explicit Reynolds-stress closure

The most popular representative of an explicit

Reynolds-stress closure is the well known linear Bous-

sinesq-viscosity model (BVM), viz.
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Fig. 1. Schematic of the 3D wall jet and the secondary flow in a square duct.
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bij ¼ �clTtSij: ð7Þ
In Eq. (7), bij ¼ ðuiuj � 2

3
kdijÞ=2k is the Reynolds-

stress anisotropy tensor and Sij ¼ ðo�uui=oxj þ o�uuj=oxiÞ=2
and Tt ¼ k=e denote the strain-rate tensor and the tur-

bulent time scale respectively. The main reason for the
popularity of the BVM is the similarity to the definition

of viscous stresses, which grossly simplifies the numeri-

cal implementation.

According to the representation theory (cf. Spencer

and Rivlin, 1959), the linear BVM (7) is a first-order

truncation of a complete non-linear relationship be-

tween the Reynolds-stress anisotropy tensor and the

velocity gradients, viz.

bijðskl;wklÞ ¼
X

k

akT k
ij ; ð8Þ

with

T k
ij ¼ T k

ijðskl;wklÞ; ð9Þ

with wij ¼ Ttðo�uui=oxj � o�uuj=oxiÞ=2 and sij ¼ TtSij. The

representation theory identifies the relevant generators

T k
ij by means of integrity-basis methods. The integrity

basis is the set of all independent matrix products of a

given group of tensors (i.e. sij and wij). Spencer and
Rivlin (1959) proved that for bijðskl;wklÞ, the integrity

basis contains only 10 matrix products (generators):

T 1
ij ¼ sij;

T 2
ij ¼ sikwkj � wikskj;
T 3
ij ¼ sikskj � 1

3
g1dij;

T 4
ij ¼ wikwkj � 1

3
g2dij;

T 5
ij ¼ wiksklslj � siksklwlj;
T 6
ij ¼ wikwklslj þ sikwklwlj � 2

3
g4dij;

T 7
ij ¼ wiksklwlqwqj � wikwklslqwqj;
T 8
ij ¼ sikwklslqsqj � siksklwlqsqj;
T 9
ij ¼ wikwklslqsqj þ siksklwlqwqj � 2

3
g5dij;

T 10
ij ¼ wiksklslqwqpwpj � wikwklslqsqpwpj:

ð10Þ

The associated 10 coefficients ak are functions of the

irreducible invariants of the integrity basis (10), i.e.

g1 ¼ sikski; g2 ¼ wikwki;

g3 ¼ sikskjsji; g4 ¼ sikwkjwji;

g5 ¼ siksklwljwji:

ð11Þ

Unfortunately, the representation theory provides no

specific information on the associated coefficients ak. In

order to evaluate the coefficients ak, Gatski and Speziale

(1993) developed an explicit solution to the implicit
algebraic-stress model as proposed by Rodi (1976):

gbij ¼ A1sij � A2ðbikwkj � wikbkjÞ þ A3 bikskj
	

þ sikbkj � 2
3
ðbmkskmÞdij



; ð12Þ

with

g ¼ C1 � 2ðbikskiÞ � 1; A1 ¼ 1
2
C2 � 2

3
;

A2 ¼ 1
2
C4 � 1; A3 ¼ 1

2
C3 � 1:

Ci denote the constants of the linear pressure-strain

correlation model, which have been substituted into the
ASM, viz.

Uij ¼ �2C1ebij þ C2kSij þ C3k bilSjl
	

þ bjlSil � 2
3
bmlSmldij



þ C4kðbilWjl þ bjlWilÞ: ð13Þ

The present paper employs the coefficients devel-

oped by Rung et al. (1999), i.e. C1 ¼ 2:5, C2 ¼ 0:39,
C3 ¼ 1:25 and C4 ¼ 0:45. Introducing the expressions

for the anisotropy tensor (8) and integrity basis (10) into

the ASM equation (12), the coefficients ak are deter-
mined from the solution of the emerging linear 10	 10

equation system (Gatski and Speziale, 1993). The re-

sulting complete explicit algebraic-stress model (EASM)

generally involves 9 rather complex, non-zero coeffi-

cients ak. The model is thus quite cumbersome and of

limited use.

2.3. Projection method

Recently, Jongen and Gatski (1998) introduced a

projection method, which enables an approximate so-

lution based on an arbitrary selection of generators. The

method projects the ASM (12) into the chosen integ-

rity basis, which yields a linear equation system to de-

termine the unknown coefficients of the polynomial

expansion. If the selected basis conforms with the
complete integrity basis (10), the solution of Gatski and

Speziale (1993) is recovered. Any reduced integrity basis

provides an approximate solution. The projection

method fails if the generators of the integrity basis are

linearly dependent. It is thus advantageous to compile

the basis as a subset of the complete integrity basis (10).

Generally, the specific basis that is produced should

render the relevant flow physics at modest computa-
tional demands.

In 2D mean flows, the integrity basis (10) collapses to

only three independent generators T 1ij , T
2
ij and T 3ij . A

robust explicit-stress closure that reconciles enhanced

predictive capabilities with moderate computational ex-

penses consists of a projection of these independent

generators. Introducing a0bij ¼
P3

n¼1 anT nij into the

ASM (12) and subsequently multiplying the resulting
equation with the each of the considered generators,

three linear equations result from after taking the trace

of each equation. The resulting 3	 3 system for the

specification of the unknown coefficients a1;...;3 reads

½gðMnmÞT þ 2A2ðMw
nmÞ

T � 2A3ðMs
nmÞ

T�an
¼ ½Mp

nm�
Tan ¼ a0A1Lm ð14Þ

with a0 ¼ detðMp
mnÞ, n;m 2 ð1; 2; 3Þ and
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Mnm ¼ T nikT
m
ki ; Ms

nm ¼ T nikskjT
m
ji ;

Mw
nm ¼ T nikwkjT

m
ji ; Lm ¼ sikT mki :

It should be noted that Eq. (14) still includes higher-

order invariants which can be further simplified by re-

stricting our interest to 2D mean flow (Gatski and

Speziale, 1993). The respective 2D solution of the

equation system (14) is usually cast into the standard

form of a quadratic EASM, viz.

bij ¼ �cl sij
	

þ b2fsikwkj � wikskjg � b3 sikskj
�

� 1
3
g1dij




;

b2 ¼ �A2=g; b3 ¼ �2A3=g;

cl ¼ �A1g
g2 � 2

3
A23g1 � 2A22g2

:

ð15Þ

3. Numerical scheme

The numerical procedure ELAN (Xue, 1998) consists

of a semi-structured, multi-block method It is based

on the fully conservative approximation of the 3D

Reynolds-averaged Navier–Stokes equations within gen-

eral curvelinear coordinates. The procedure employs a

cell-centered, co-located storage arrangement for all

transport properties. Diffusion terms are approximated

using second-order central differences, whereas advective
fluxes are approximated using higher-order monotonic-

ity preserving schemes. The latter are applied in scalar

form by means of a deferred-correction procedure. The

odd–even decoupling problem of the cell-centered

scheme is suppressed with a fourth-order artificial dissi-

pation pressure term in the continuity equation. The

solution is iterated to convergence using a pressure-cor-

rection approach. Various turbulence-transport and
subgrid scale models are implemented based on the ap-

parent pressure/viscosity principle. In order to reduce the

computational effort, the solver is parallelised by means

of a domain-decomposition method.

4. Modelling of turbulent-secondary motion

The accurate prediction of stress-induced streamwise

vorticity is crucial for the successful prediction of 3D

wall jets. Confining our interest to the prediction of

turbulent-secondary motion, it is instructive to briefly

elucidate the performance of the quadratic baseline

EASM (15) in simple channel flows and in non-circular

duct flows (cf. Fig. 1)––the latter also features turbu-

lence generated streamwise vorticity.
The first example of the present paper is devoted to

the models ability to accurately mimic the degree of

stress-anisotropy in a simple 2D turbulent channel flow.

Table 1 illustrates the fair predictive performance of the

present EASM.Whilst not crucial for simple shear flows,

the predictive performance displayed in the channel flow

example will have serious implication on the prediciton

of turbulence-driven secondary motion, which predom-

inantly hinges on an accurate prediction of normal-stress

anisotropy. It should be noted, that the the cubic and

quartic terms are irrelevant for the channel flow since

they vanish in simple uni-directional shear flows.

4.1. Fully-developed square duct

It was outlined by Rung et al. (2000) that both the

magnitude and the orientation of the turbulent-second-

ary motion in a non-circular duct flow are governed by

the rapid part of the linear pressure–strain model (13).

Due to the fully developed state of the flow, the velocity

gradients normal to the walls dominate the velocity-
gradient tensor. As in 2D flows, only the first three

generators of the integrity basis are independent. Thus,

a quadratic model should be sufficient to render the

turbulent physics. Substituting the Reynolds stress ten-

sor by the related quadratic EASM expression (15) into

the momentum equation (2), one obtains an equation

for the secondary motion, i.e.

o�uu1
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� �
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Obviously, the secondary flow hinges on the coeffi-

cient difference A3 � A2 ¼ 1
2
ðC3 � C4Þ which vanishes for

a linear BVM. Fig. 2 compares the predicted secondary

flow patterns obtained from the linear BVM (7) and the
quadratic EASM (15) for the fully-developed square

duct flow at ReH ¼ 4200. The numerical grid consists of

72	 72	 10 nodes, with Y þ � 0:3. The linear model

predicts no secondary motion, whereas the quadratic

EASM features a significant amount of secondary flow.

The impact of the secondary motion to the primary

velocity (�uu3) is insignificant, hence both models return

similar primary velocities.

Table 1

Incompressible (homogeneous) shear flow �uu1ðx2Þ: Performance of the
present EASM in comparison to DNS data reported by Kim et al.

(1987) and Rogers et al. (1986) for two different shear rates

S ¼ k=ejd�uu1=dx2j
S ¼ 3:3 S ¼ 5:7

EASM DNS EASM DNS

b11 0.180 0.179 0.215 0.215

b22 )0.130 )0.127 )0.155 )0.153
b33 )0.050 )0.052 )0.060 )0.062
b12 )0.158 )0.143 )0.157 )0.158
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The latter is more obvious from the comparison of

primary and secondary velocity profiles with experi-

ments of Cheesewright et al. (1990) displayed in Fig. 3.

The figure confirms, that the influence of the secondary
flow is rather weak, thus, linear and quadratic model are

in close agreement with the experimental data. However,

the linear model completely fails to predict the second-

ary flow whilst the quadratic shows a good qualitative

agreement with the experiment. The orientation of the

secondary flow is correctly captured, only the magnitude

is under predicted at some positions. As outlined by

Rung et al. (2000), the higher-order generators vanish in
this flow. Hence, the quartic model yields the same result

as the quadratic one.

4.2. 3D wall jet

The gross features of the velocity gradients in a 3D

wall jet resemble those of the aforementioned square

duct. The symmetry plane of both examples is domi-
nated by the velocity gradients in the normal and lateral

directions (cf. Fig. 1). However, a closer inspection of

the two examples reveals two fundamental differences.

As opposed to the fully developed state of the duct flow,

the 3D wall jet features a significant primary velocity

gradient along the jet axis. Moreover, the secondary

flow in the 3D wall jet has a prominent impact on the

development of the primary motion. The latter is of
particular relevance, since the secondary flow of the 3D

wall jet is indeed of opposite orientation. Contrary to

the square-duct example, the secondary motion pushes

the fluid away from the symmetry plane along the wall

(cf. Fig. 1). A quadratic stress–strain relation, which

captures the secondary motion in a non-circular duct,

will thus return an utterly wrong prediction when ap-

plied to the 3D wall jet problem. In the remainder of the

paper, results will be reported for a generic wall jet

discharged through a square orifice. The investigated

Reynolds number based on the width d of the orifice and
the bulk velocity is Red ¼ 60000. The computational

domain covers 75d in lateral, 50d in normal and 100d in
downstream direction. The employed numerical grid

consists of 100	 70	 150 nodes. It was derived from

initial test with a 2D wall jet and subjected to a subse-

quent grid-refinement for the final 3D jet case. The re-

finement process did address resolution aspects and the

impact of the size of the physical domain. The final grid
displayed no further improvements when the grid reso-

lution was increased.

Fig. 4 depicts the predictive failures of the quadratic

EASM (15) and the linear BVM (7) in the 3D wall-jet

problem. The BVM predicts no secondary motion and

a small amount of lateral spread. The stress-anisotropy

induced vorticity is not captured due to the isotropic

nature of the BVM. The almost circular isolines show no
preferred direction. Likewise, the ratio of the lateral-

to-normal rate of spread is close to unity. As outlined

above, the calibration of the pressure–strain model with

regards to the square-duct example yields the wrong

secondary motion due to its rigid alignment to 2D mean

flow situations. The secondary motion erroneously

pushes the fluid towards the symmetry plane and thereby

attenuates the lateral spreading. The intensity of the
secondary motion is small. Hence, the influence on the

primary flow is minor and the corresponding isolines

show only a weak inflection towards the wall-normal

direction.

The conventional EASM is confined to linear pres-

sure-strain models omitting corrective wall-reflection

terms. Thus, the linear formulations suggested by Craft
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Fig. 2. Turbulent square duct at ReH ¼ 4200 (Cheesewright et al., 1990): Primary-velocity isolines obtained from a Boussinesq-viscosity model (left)

and a quadratic explicit algebraic-stress model (right) with secondary-flow vectors.
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and Launder (2001) cannot be used. The present ap-
proach aims to mimic the spreading mechanism of the

3D wall jet via the inclusion of additional generators

supplementary to the quadratic baseline formulation

(15).

The axial vorticity is primarily induced through the

normal-stress anisotropy in response to principal

strains. Since the normal-stress anisotropy due to a

primary shear is aligned to the even-order terms of the
EASM, the quartic generators of the integrity basis (10)

are most appropriate to model the phenomenon. The

additional generators should, of course, not affect the

performance of the quadratic baseline model in 2D

mean flows. Hence, it is advantageous to consider only

generators which vanish in 2D flows. The accordingly

modified quartic generators read

T 70

ij ¼ T 7
ij þ 1

2
g2T

ð2Þ
ij ;

T 80

ij ¼ T 8
ij � 1

2
g1T

ð2Þ
ij ;

T 90

ij ¼ T 9
ij � g2T

ð3Þ
ij :

ð17Þ

With respect to the co-ordinate system displayed in

Fig. 1, the non dimensional strain-rate and vorticity
tensors of the 3D wall jet reduce in first order towards:

sij ¼
�C 0 A
0 0 B
A B C

2
4

3
5 ð18Þ

and

wij ¼
0 0 �A
0 0 �B
A B 0

2
4

3
5: ð19Þ

The corresponding quartic generators (17) follow
from

T 70
ij ¼

0 0 �A2BC
0 0 A2BC

�A2BC A2BC 0

2
64

3
75;

T 80
ij ¼

0 0 A2BC

0 �2B2C2 �BCD2

A2BC �BCD2 2B2C2

2
64

3
75;

T 90
ij ¼

4
3
B2C2 �A2BC �A2BC

�A2BC �2
3
B2C2 A2BC

�A2BC A2BC �2
3
B2C2

2
664

3
775

ð20Þ

with D2 ¼ ðA2 þ C2Þ.
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Fig. 3. Turbulent square duct at ReH ¼ 4200 (Cheesewright et al., 1990): Comparison of primary (top) and secondary velocity (bottom) in with

experimental data from Cheesewright et al. (1990).
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T 7
0
ij includes no contribution from the normal-

stress components and is therefore unable to capture

the anisotropy induced secondary motion of the 3D

wall jet. Both T 8
0
ij and T 9

0
ij feature the aspired normal-

stress anisotropy. Due to its sparse nature, T 8
0
ij has

been chosen to model the 3D wall jet in the present

paper.

In view of a more general model, it is beneficial to

include an additional cubic generator, i.e. T 5ij . The cubic
term improves the predictive performance in flows fea-

turing curvature induced variations of turbulent shear,

e.g. the rotating pipe flow, but has almost no influence

on the wall-jet predictions. Moreover, T 5ij also vanishes
in 2D flows and does not alter the existing 2D model.

The coefficients of explicit-stress closure are again de-

termined by the projection method. In order to preserve

the simplicity of the quadratic model, only the leading-

order terms (invariants) are considered in the equation

system which is used to determine the coefficients a1...5.
In particular, higher-order invariants, e.g. g3, g4, are
neglected. Projecting the ASM (12) into the 5-generator
basis T 1ij , T

2
ij , T

3
ij , T

5
ij and T

80
ij and restricting our interest to

the leading-order terms, the explicit stress–strain rela-

tion finally reads:

bij ¼ �2clTt Sij
	

þ b2TtfSikWkj � WikSkjg

� b3TtfSikSkj � 1
3
SkqSqkdijg þ b5T

2
t fWikSklSlj

� SikSklWljg þ b8T
3
t fSikWklSlqSqj � SikSklWlqSqj

� 1
2
SpmSmp½SikWkj � WikSkj�g



;

cl ¼ �A1g
g2 � 2

3
A23g1 � 2A22g2

;

b2 ¼ �A2=g; b3 ¼ �2A3=g;

b5 ¼
�6A2ðA3 � A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g2=g1

p
Þ

�2g2 þ A23g1 þ A22g2
; b8 ¼ C80 �6A2

g1g
:

ð21Þ

The introduction of the additional coefficient C80

deserves further attention. It aims to facilitate an im-
proved modelling of the wall jet, in particular the correct

orientation of the secondary motion. In the present

model, the latter is achieved by setting C80 ¼ �1. The
approach might be considered as a violation of the

modelling rationale. It should, however, be noted that

the adopted projection method already represents
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Boussinesq-viscosity model (top row) and the quadratic explicit algebraic-stress model (bottom row).
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an approximate solution. Furthermore, the projection

method generally returns complex coefficients in con-

junction with higher-order generators, which might be-
come singular and require a simplification. The latter is

achieved by removing high-order invariants from the

matrices. Therefore the rigorous concept of the EASM is

already broken before the constant C80 is introduced.

4.3. Results of the quartic model

The predictive response of the suggested quartic

stress–strain relation (21) is depicted by Fig. 5. A com-

parison with Fig. 4 reveals that the quartic model is

clearly superior to the traditional alternatives.

As indicated by Fig. 5, the secondary motion displays
the desired orientation which is opposite of the square

duct example. Driven by the stress induced secondary

motion, the fluid travels down the symmetry plane and

augments the lateral spreading along the wall. A clear

flattening of the isolines proves that the predicted lateral

rate of spread exceeds the normal rate of spread. Whilst

the higher lateral spreading corresponds to experimental

findings, the quartic models shows a bulging of the iso-
lines away from the symmetry plane, which is not

reported by experiments. The predicted secondary flow

has the correct orientation, however, the model shows a

pronounced vortex-like structure. In contrast to the

experiment, the quartic models returns a more confined

secondary flow regime, predicting the center of the

vortex in close proximity to the symmetry plane. Ac-

cordingly, an upward motion is introduced which de-
forms the isolines.

A classical feature of the wall jet is the approach of a

self-preserving state downstream of the development

region. Fig. 6 displays that all models under investiga-

tion, i.e. BVM, quadratic and quartic EASM, predict a

self-similar behaviour of the flow downstream of

z=d � 50. Fig. 7 reveals that the primary velocity of the

3D wall jet is significantly affected by the evolution of

the secondary motion. The axial velocity in direction of

the jet axis is reduced by means of the strong lateral

spreading. The quartic EASM is the only model which

predicts an enhancement of the lateral spread due to

turbulent-secondary motion. Accordingly, it returns the

most pronounced attenuation of the primary velocity

0 0.025 0.05 0.075 0.1
X

0

0.02

0.04

0.06

0.08

Y

0 0.05 0.1 0.15 0.2
X

0

0.05

0.1

0.15
Y

12

2

4

EASM EASM

Fig. 5. 3D wall jet at Red ¼ 60000 (Abrahamsson, 1997): Isolines of the primary velocity (left) and secondary flow (right) obtained from the quartic
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when the jet travels downstream. With attention re-

stricted to the self-similar regime (z=d > 60), the agree-

ment between the quartic model and experiments

reported by Abrahamsson (1997) is fair.

A more detailed comparison of the predicted sec-
ondary flow is obtained from the normalised lateral

velocity profiles illustrated by Fig. 8. While the linear

and the quadratic models display only a weak secondary

motion, the quartic model agrees well with the mea-

surements near the symmetry plane. The magnitude of

the predicted secondary velocity obtained from the

quartic model is about eight times larger than the result

of the linear model. However, the predicted secondary
motion collapses aft of the lateral half-width, which

yields a substantially lower spreading rate when com-

pared to the experiment. Moreover, the quartic EASM

shows a slight deterioration from the self-similar state.

At all three positions displayed in Fig. 8, the lateral

velocity profiles of the EASM agree in their shape but

feature a slight variation of the amplitude. In contrast,

the profiles of primary velocity illistrated by Fig. 6 de-
pict a more satidfactory self-similarity. Table 2 sum-

marises the computed spreading rates in comparison to

Abrahamsson�s (1997) experimental data and second-

moment closure results reported by Craft and Launder

(2001). The quartic model still under-predicts the ex-

perimental spreading ratio by 50%. The spreading ratio

obtained from the quartic model is, however, three times

larger than the ratio obtained by the traditional BVM.

In contrast to the present EASM, the non-linear second-

moment closure suggested by Craft et al. significantly
over-predicts the spreading ratio.

5. Concluding remarks

The focal point of the paper is the computational

modelling of the spreading mechanism of a 3D wall jet by
means of an explicit algebraic stress model. The model-

ling approach is based on two building-block flows

which are both driven by turbulent-secondary motion,

i.e. the fully developed square-duct and the 3D wall jet.

The comparative analysis of these two flows reveals that

the 3D wall jet is beyond the predictive realms of tradi-

tional linear and quadratic stress–strain relations. The

paper argues that a necessary prerequisite for the accu-
rate simulation of the spreading mechanism featured by

3D wall jets is a decoupling of the principal axes of the

Reynolds-stress- and velocity-gradient tensors.

The primary objective of the presented quartic

EASM is to mimic the correct structure of the Reynolds-

stress tensor for the wall jet while retaining the baseline

performance of the quadratic formulation. The latter is

achieved by the inclusion of quartic terms which vanish
in 2D mean flow situations. The adopted approach

demonstrates the suitability of the projection method for

the introduction of a novel qualitative feature to the

modelling frame. The suggested EASM captures the

correct secondary motion for both the square-duct flow

and the 3D wall jet. For the 3D wall jet, the quartic

explicit-closure achieves the same overall predictive ac-

curacy as an elaborate second-moment closure (Craft
and Launder, 2001).
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